Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ.

نویسندگان

  • Fernando Aguado
  • Juan F Espinosa-Parrilla
  • María A Carmona
  • Eduardo Soriano
چکیده

Spontaneous neuronal activity is essential to neural development. Until recently, neurons were believed to be the only excitable cells to display spontaneous activity. However, cultured astrocytes and, more recently, astrocytes in situ are now known to exhibit spontaneous Ca2+ transients. Here we used Ca2+ imaging of astrocytes from transgenic mice for the simultaneous monitoring of [Ca2+]i changes in large numbers of astrocytes. We found that spontaneous activity is a common property of most brain astrocytes that is lost in response to a lesion. These spontaneous [Ca2+]i oscillations require extracellular and intracellular Ca2+. Moreover, network analysis revealed that most astrocytes formed correlated networks of dozens of these cells, which were synchronous with both astrocytes and neurons. We found that decreasing spontaneous [Ca2+]i transients in neurons by TTX does not alter the number of active astrocytes, although it impairs their synchronous network activity. Conversely, bicuculline-induced epileptic patterns of [Ca2+]i transients in neurons cause an increase in the number of active astrocytes and in their network synchrony. Furthermore, activation of non-NMDA and NMDA ionotropic glutamate receptors is required to correlate astrocytic networks. These results show that spontaneous activity in astrocytes and neurons is patterned into correlated neuronal/astrocytic networks in which neuronal activity regulates the network properties of astrocytes. This network activity may be essential for neural development and synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity.

Results presented in this study indicate that a large subpopulation (approximately 65%) of hippocampal astrocytes in situ exhibit calcium oscillations in the absence of neuronal activity. Further, the spontaneous oscillations observed within individual hippocampal astrocytes generally developed asynchronously throughout the astrocyte's fine processes and occasionally spread through a portion of...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Astrocytes regulate cortical state switching in vivo.

The role of astrocytes in neuronal function has received increasing recognition, but disagreement remains about their function at the circuit level. Here we use in vivo two-photon calcium imaging of neocortical astrocytes while monitoring the activity state of the local neuronal circuit electrophysiologically and optically. We find that astrocytic calcium activity precedes spontaneous circuit s...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Rese ach R esult s of the BCF prese nted at :

While astrocytes have been repeatedly shown to play a functional and developmental role at the synapse, it remains unclear whether these cells contribute to neuronal network state and processing. Calcium imaging in conjunction with the extracellular recording of hundreds of neurons revealed complex relationships between the network activity of neurons and astrocytes. Using GFAP-Melanopsin, a li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2002